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ABSTRACT In this work we examine how pro-
tein structural changes are coupled with sequence
variation in the course of evolution of a family of
homologs. The sequence–structure correlation anal-
ysis performed on 81 homologous protein families
shows that the majority of them exhibit statistically
significant linear correlation between the measures
of sequence and structural similarity. We observed,
however, that there are cases where structural vari-
ability cannot be mainly explained by sequence
variation, such as protein families with a number of
disulfide bonds. To understand whether structures
from different families and/or folds evolve in the
same manner, we compared the degrees of struc-
tural change per unit of sequence change (“the
evolutionary plasticity of structure”) between those
families with a significant linear correlation. Using
rigorous statistical procedures we find that, with a
few exceptions, evolutionary plasticity does not
show a statistically significant difference between
protein families. Similar sequence–structure analy-
sis performed for protein loop regions shows that
evolutionary plasticity of loop regions is greater
than for the protein core. Proteins 2005;61:535–544.
© 2005 Wiley-Liss, Inc.*
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INTRODUCTION

A protein sequence folds into a unique, highly ordered
conformation which maintains its specific function. As
proteins evolve, their sequences change due to amino acid
replacements, the majority of which are believed to be
effectively neutral.1 Consequently, protein-specific func-
tion, structure, folding, and the protein–protein interac-
tion network as a rule change gradually in the course of
evolution. Indeed, the overall protein structural topology
is so well preserved throughout evolution that proteins
that diverged billions of years ago may still show remark-
able structural resemblance and, in many cases, sequence
conservation as well.2

The fundamental question of whether protein structures
evolve by divergence or by convergence inspired many
comparative studies of protein structures and networks of
protein similarities.3–10,42 According to the convergent
scenario, protein structural similarity can occur indepen-

dently in two proteins due to the limited number of
topological arrangements.11,12 Recently, it has been shown
that convergent models do not adequately describe the
patterns of sequence and structural similarity observed in
the populations of real proteins by using graph theoretical
methods.8,10 By contrast, the scale-free behavior and other
important characteristic features of protein networks can
be correctly reproduced using divergent models of struc-
tural evolution.7–10 In these models, new protein struc-
tures emerge, and existing structures change through the
processes of duplication and subsequent divergence from a
common ancestor.

The sequence and structural analysis of many com-
monly observed protein folds points to the dominant role of
divergent mechanisms in protein structural evolution as
well.13–17 It has been demonstrated, for example, that
proteins from the TIM barrel, OB-fold, cupredoxin, and
�-trefoil folds have common features in their topology,
nature of ligands, and location of catalytic residues, which
points to the plausibility of divergent scenarios for these
and other protein folds comprising the protein universe. In
a previous study, we likewise observed a significant linear
correlation between sequence similarity and loop struc-
tural similarity for the aforementioned folds.18 Given that
the loops do not contribute much to the protein core
stability, we argued that the strong coupling between the
changes in sequence and loop structure can only happen
due to divergent evolution.

Chothia and Lesk first addressed the question of cou-
pling between the structural and sequence changes in
proteins, and found an exponential dependence of root-
mean-square deviation on percent of sequence identity.2

Further studies that were performed on larger datasets of
proteins showed similar results.5,19 Recently, however, it
has been shown on a sample of 36 protein families that
most of the structural variation in aligned regions of
homologous proteins is linearly correlated with the changes
in sequence which supports the “global” model of protein
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structure.20 According to this model, all residue–residue
interactions, not just a few key residues, are important in
determining the unique protein structure. In an attempt to
solve the “fold recognition” problem and design structural
models for new sequences, Koehl and Levitt performed an
analysis of how structural changes between two protein
folds correlate with the differences between the sequences
that are compatible with these folds.21 They also found, on
a benchmark of 12 protein families, that structural changes
as measured by cRMS are linearly related to the changes
in sequence.

In this article we study how the protein structure
changes in its conserved aligned core regions and un-
aligned loop regions as proteins diverge from a common
ancestor. We performed a sequence–structure correlation
analysis on a large number of families of homologous
proteins and found a statistically significant linear correla-
tion between measures of sequence and structural similar-
ity for the great majority of these families. This finding
allows us to address the next important question of how
much sequence change can protein structure tolerate, and
whether it depends on the type of protein fold, or on some
other sequence and structural characteristics. We call this
quantity “the evolutionary plasticity of structure” (EPS),
and estimate it by calculating the regression coefficients of
linear sequence–structure dependencies for homologs.

METHODS
Test Set

Sets of homologous protein families were extracted from
the CDD search database version 1.62 at http://www.ncbi.
nlm.nih.gov/Structure/cdd/cdd.shtml. The CDD collection
of protein domain alignments includes curated CDDs22

and preprocessed domain families imported from SMART
and PFAM, 6222 protein domain families altogether.23

Upon import, the sequences from SMART/PFAM align-
ments with more than 75% identity with known structures
were substituted by the most similar structure from the
Protein Data Bank.24 Those families containing short
sequence repeats and having average alignment length of
less than 50 residues were excluded from the test set.

Each CDD family was decomposed into a set of pairwise
structure–structure alignments. Structural alignments
within CDD families were computed by the VAST algo-
rithm,25 and were selected for analysis according to the
following criteria: (a) the mutual overlap between the
VAST alignment footprint and CDD footprint (the foot-
print for a given sequence was defined as a region between
the first and the last residues aligned by VAST or CDD)
was at least 80%; (b) X-ray resolution of both structures in
a pair was better than 3.0 Å; (c) BLAST E-value calculated
for VAST alignment was less than 0.01; (d) any discontinu-
ous domain26 inconsistently aligned between VAST and
CDD was disregarded.

Additionally, to the requirements imposed on structural
pairs we selected protein families based on the following
criteria: (a) the protein family should contain at least 10
structurally aligned protein pairs; (b) proteins from a
given family should span a wide range of sequence similar-

ity, that is, should cover a range of at least 30% in sequence
identity between the most diverged and least diverged
structural pair; (c) not more than two protein family
alignments from the same domain cluster were retained in
the final test set; the redundancy between protein families
was checked by using the procedure implemented in the
CDART algorithm.27 Even though these protein families
can belong to the same domain cluster, they are coming
from different sources and have rather different align-
ments (Table I).

The final test set comprised 81 CDD families covering a
wide range of functional and structural classes. The list of
test families together with their length, number of protein
pairs, and the PDB code of the first structure is shown in
Table I. The test set for loop analysis contained 59
families, excluding 22 families that had a high fraction of
pairs with missing coordinates in loop regions (see the next
section).

Measures of Structural and Sequence Similarity

To measure the quality of linear correlation between
sequence and structural characteristics for homologous
proteins from the same family, we first need to choose the
most sensitive and reliable measures of sequence and
structural similarity. Because most of the structural simi-
larity measures (RMSD, AHM, LHM) are extensive and
depend on the number of residues and protein size, the
aforementioned structural measures should be divided by
the radius of gyration (similar but not identical results
were obtained with the normalization by the square root of
the number of aligned residues). The radius of gyration for
a protein pair was calculated for each of the two proteins in
the pair based on the structurally aligned part and then
was averaged. As a result, the normalized RMSD, AHM,
and LHM quantities do not depend on the number of
residues any more. Nonnormalized conventional measures
of structural similarity yielded weaker sequence/structure
correlation (not shown) so that in our further analysis we
used only normalized structural similarity measures.

The sequence similarity was measured as the BLAST
bitscore28 divided by the alignment length (bitscore per
residue). Structural similarity measures based on compar-
ing the structures in the aligned regions comprised RMSD,
fraction of conserved contacts (CC), and aligned Hausdorff
measure (AHM), whereas the loop-based Hausdorff mea-
sure (LHM) quantified the difference in the loop regions.
The fraction of conserved contacts was calculated as a
fraction of identical residue contacts in both structures
divided by the average number of contacts in both struc-
tures made by the aligned residues.29 The contacts were
defined between residues separated along the chain by at
least five peptide bonds and having C� atoms less than 8 Å
apart.

The root-mean-squared deviation (RMSD) was calcu-
lated using the superposition algorithm due to
McLachlan.30 Another measure that quantified the struc-
tural difference of proteins between the aligned regions
and between the loops was based on the mathematical
concept of Hausdorff distance.18,31 Let A � {a1, …,am} and
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TABLE I

Identifiera PDBb Lenc Nd Corr (�)e
Slope
(b)f Descriptiong

cd00157,
smart00174

1I4D_D,
1M7B_A

172,173 66, 10 �0.21,
�0.51

�0.017,
�0.039

Rho subfamily of Ras-like small GTPases [P-loop
containing nucleotide triphosphate hydrolases]

pfam00969 1JK8_B 86 32 �0.53 �0.066 Class II histocompatibility antigen, beta domain
[MHC antigen-recognition domain]

smart00085,
pfam00068

1BK9,
1BK9

102,102 210,102 �0.44,
�0.39

�0.074,
�0.081

Phospholipase A2 [Phospholipase A2, PLA2]

pfam00017 2SHP_A 86 21 �0.58 �0.078 SH2 domain [SH2-like]
cd00119,

smart00263
1LMQ,
1C7P_A

109,116 24, 67 �0.55,
�0.69

�0.088,
�0.095

C-type lysozyme and alpha-lactalbumin [Lysozyme-
like]

smart00651 1B34_B 63 30 �0.59 �0.09 snRNP Sm proteins [Sm-like]
cd00367 1POH 85 10 �0.84 �0.092 Histidine-containing phosphocarrier protein (HPr)

[HPr-like]
pfam00077 1MVP_A 84 15 �0.77 �0.092 Retroviral aspartyl protease [Acid proteases]
smart00034,

cd00037
1TN3,

1IOD_B
90, 93 35,263 �0.67,

�0.61
�0.097,
�0.101

C-type lectin (CTL) or carbohydrate-recognition
domain (CRD) [C-type lectin-like]

smart00429 1NFI_B 97 21 �0.9 �0.098 Ig-like, plexins, transcription factors
[Immunoglobulin-like beta-sandwich]

pfam00406 3AKY 174 28 �0.45 �0.104 Adenylate kinase [P-loop containing nucleotide
triphosphate hydrolases]

pfam00030,
smart00247*

1A45,
1ELP_A

81, 76 10, 15 �0.79,
�0.91

�0.08,
�0.107

Beta/gamma crystallins [gamma-Crystallin-like]

smart00125 21BI 130 10 �0.89 �0.112 Interleukin-1 homologs [beta-Trefoil]
cd00070 1QKQ_A 124 28 �0.8 �0.114 Galectin/galactose-binding lectin [Concanavalin

A-like lectins/glucanases]
pfam00502 1QGW_C 148 15 �0.75 �0.114 Phycobilisome protein [Globin-like]
pfam00073*,

cd00205*
1EAH_1,
1VBB_1

216,195 95, 71 �0.87,
�0.85

�0.097,
�0.114

Picomavirus capsid protein domain [Viral coat and
capsid proteins]

pfam01833* 1BFS 89 39 �0.89 �0.119 IPT/TIG domain [Immunoglobulin-like beta-
sandwich]

pfam00259* 1A0E_A 381 28 �0.99 �0.12 Xylose isomerase [TIM beta/alpha-barrel]
pfam00129* 1K8D_A 175 28 �0.96 �0.122 Class I Histocompatibility antigen, domains alpha 1

and 2 [MHC antigen-recognition domain]
pfam02800 1JN0_O 153 39 �0.79 �0.122 Glyceraldehyde 3-phosphate dehydrogenase, C-

terminal domain [Glyceraldehyde-3-phosphate
dehydrogenase-like, C-terminal domain]

smart00636*,
pfam00704

1KFW_A,
1LG1_A

350,285 36, 53 �0.88,
�0.83

�0.123,
�0.187

Glycosyl hydrolases family 18 [TIM beta/alpha-
barrel]

pfam00074,
cd00163*

1K2A_A,
1QMT_A

98, 99 44, 25 �0.61,
�0.89

�0.066,
�0.123

Pancreatic ribonucleases [RNase A-like]

pfam00248* 1QRQ_C 277 28 �0.93 �0.124 Aldo/keto reductase family [TIM beta/alpha-barrel]
pfam00056* 1LLC 135 44 �0.83 �0.125 lactate/malate dehydrogenase, NAD binding

domain [NAD(P)-binding Rossmann-fold
domains]

cd00190,
smart00020

1MKX_K,
1DLE_A

211,208 378,561 �0.57,
�0.57

�0.126,
�0.15

Trypsin-like serine protease [Trypsin-like serine
proteases]

pfam00194* 1ZNC_A 245 10 �0.99 �0.127 Eukaryotic-type carbonic anhydrase [Carbonic
anhydrase]

pfam00107* 1KOL_A 337 64 �0.93 �0.129 Zinc-binding dehydrogenase [GroES-like; NAD(P)-
binding Rossmann-fold domains]

cd00148* 1D1J_D 120 15 �0.92 �0.13 Profilin [Profilin-like]
pfam00686* 4CGT 94 15 �0.93 �0.131 Starch binding domain [Prealbumin-like]
pfam00043* 1K3Y_A 107 77 �0.82 �0.134 Glutathione S-transferase, C-terminal domain

[Glutathione S-transferase (GST), C-terminal
domain]

pfam00061 1PMP_C 131 55 �0.62 �0.134 Lipocalin/cytosolic fatty-acid binding protein family
[Lipocalins]

cd00099* 1CDI 105 133 �0.84 �0.134 Immunoglobulin domain variable region (v)
subfamily [Immunoglobulin-like beta-sandwich]

pfam00112*,
smart00645*

1EF7_A,
3PBH

200,202 55, 90 �0.84,
�0.87

�0.137,
�0.15

Papain family cysteine protease [Cysteine
proteinases]

pfam00101* 1IR2_7 102 15 �0.91 �0.137 Ribulose bisphosphate carboxylase, small chain
[RuBisCO, small subunit]

smart00631* 1H8L_A 260 15 �0.91 �0.138 Zn_pept domain [Phosphorylase/hydrolase-like]
cd00098 2HRP_L 88 85 �0.69 �0.14 Immunoglobulin domain constant region 1 (cl)

subfamily [Immunoglobulin-like beta-sandwich]
pfam00394* 1GS6_X 118 16 �0.97 �0.149 Multicopper oxidase [Cupredoxin-like]
pfam00210* 1KRQ_A 152 19 �0.92 �0.149 Ferritin-like domain [Ferritin-like]
pfam00016* 1RUS_A 236 10 �0.92 �0.15 Ribulose bisphosphate carboxylase large chain,

catalytic domain [TIM beta/alpha-barrel]
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B � {b1, …,bn} be finite point sets in a Euclidean space. The
Hausdorff distance between the sets A and B is then
defined by:

dH�A,B� � max�minjd�a1,bj�, . . . ,minjd�am,bj�,

minid�ai,b1�, . . . ,minid�ai,bn�	 (1)

Here, the terms d(ai,bj) denote the Euclidean distance
between the points. In other words, the Hausdorff distance
between the sets A and B is the smallest distance such that
every point ai � A is within this distance of some point bj �

B, and vice versa. Hausdorff distance can be defined under
the assumption that the structural alignment between two

TABLE I. Continued

Identifiera PDBb Lenc Nd
Corr
(�)e

Slope
(b)f Descriptiong

pfam00144* 1BLH 264 45 �0.91 �0.151 Beta-lactamase [beta-Lactamase/D-ala carboxypeptidase]
cd00195,

smart00212
2UCZ,
2UCZ

140,
141

21,45 �0.64,
�0.8

�0.155,
�0.157

Ubiquitin-conjugating enzyme E2 and UBC homologues
[UBC-like]

pfam00155* 1B8G_B 353 14 �0.93 �0.157 Aminotransferase class I and II [PLP-dependent
transferases]

smart00102 1AHQ 116 10 �0.89 �0.161 Actin depolymerisation factor/cofilin-like domains
[Gelsolin-like]

pfam00135 1QO9_A 485 28 �0.8 �0.161 Carboxylesterase [alpha/beta-Hydrolases]
cd00051 1FW4_A 57 59 �0.76 �0.162 EF-hand, calcium binding motif [EF Hand-like]
smart00235*,

cd00203*
1CIZ_A,
1HV5_A

137,
134

34,23 �0.88,
�0.92

�0.163,
�0.206

Zinc-dependent metalloprotease [Zincin-like]

pfam00258* 1CZU_A 143 26 �0.89 �0.167 Flavodoxin [Flavodoxin-like]
pfam02866* 1LDN_H 143 29 �0.88 �0.167 lactate/malate dehydrogenase, alpha/beta C-terminal

[Lactate and malate dehydrogenases, C-terminal]
pfam00331*,

smart00633*
1HIZ_A,
1HIZ_A

297,
297

15,21 �0.95,
�0.93

�0.168,
�0.185

Glycosyl hydrolase family 10 [TIM beta/alpha-barrel]

smart00452*,
pfam00197*

1AVU,
1BA7_A

151,
150

10,10 �0.92,
�0.9

�0.171,
�0.185

Soybean trypsin inhibitor (Kunitz) family of protease
inhibitors [beta-Trefoil]

pfam00141* 1ITK_B 240 48 �0.93 �0.174 Peroxidase [Heme-dependent peroxidases]
pfam00161 1PAG_A 232 28 �0.87 �0.174 Ribosome inactivating protein [Ribosome inactivating

proteins (RIP)]
pfam00111,

cd00207*
1L5P_A,
1AWD

69,
78

73,38 �0.78,
�0.88

�0.165,
�0.176

2Fe-2S iron-sulfur cluster binding domain [beta-Grasp
(ubiquitin-like)]

cd00314* 1FHF_A 236 76 �0.91 �0.178 Plant peroxidase superfamily [Heme-dependent
peroxidases]

pfam00180 1HQS_A 343 10 �0.93 �0.181 Isocitrate/isopropylmalate dehydrogenase
[Isocitrate/Isopropylmalate dehydrogenases]

pfam02806*,
smart00632*

1C8Q_A,
1KXQ_A

78,
81

39,31 �0.93,
�0.94

�0.181,
�0.188

Alpha amylase, C-terminal all-beta domain [alpha-
Amylases, C-terminal beta-sheet domain]

cd00047*,
smart00194*

1GWZ,
2SHP_A

228,
248

28,25 �0.89,
�0.93

�0.186,
�0.214

Protein tyrosine phosphatases (PTP), catalytic domain
[(Phosphotyrosine protein) phosphatases II]

pfam00042 4VHB_A 133 96 �0.76 �0.186 Globin [Globin-like]
pfam00076 1A9N_B 72 15 �0.68 �0.191 RNA recognition motif [Ferredoxin-like]
pfam00127 1AIZ_A 81 87 �0.85 �0.196 Copper binding proteins, plastocyanin/azurin family

[Cupredoxin-like]
pfam00227* 1JD2_F 189 56 �0.84 �0.21 Proteasome A-type and B-type [Ntn hydrolase-like]
pfam00337 1C1F_A 122 15 �0.89 �0.213 Galactoside-binding lectin [Concanavalin A-like lectins/

glucanases]
pfam00080* 1F1G_C 139 15 �0.98 �0.218 Copper/zinc superoxide dismutase (SODC)

[Immunoglobulin-like beta-sandwich]
pfam00208* 1EUZ_E 203 11 �0.94 �0.272 Glutamate/Leucine/Phenylalanine/Valine dehydrogenase

[NAD(P)-binding Rossmann-fold domains]
aCDD profile identifier.
bRepresentative PDB structure.
cDomain alignment length.
dNumber of structural pairs in a family.
eLinear correlation coefficient.
fSlope of the linear regression line (Evolutionary Plasticity of Structure).
gCDD domain description [SCOP 1.6341 fold is listed in square brackets].
The table lists protein families together with the PDB code of the template structure, average length of pairwise structure–structure alignments,
number of structural pairs per family, Pearson linear correlation coefficient between AHM and BLAST bitscore per residue, slope of the
regression lines (regression coefficient or EPS), and the family description. Those families having high linear correlation (correlation coefficients
obtained with both normalized RMSD and normalized AHM were less than �0.8 and r2-ratio for both measures of structural similarity were
higher than 0.9) are indicated by the asterisks.
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domains is known and the C� atoms for both structures are
in a common coordinate frame.

The Hausdorff measure for loops (LHM) was calculated
as follows:

LHM �
1

ns � 1 �
i�1

ns�1

hi. (2)

Here “loop” is defined as a region between two consecu-
tive aligned secondary structure elements and ns is the
number of aligned secondary structure elements: hi � 0, if
the ith loop regions do not have any unaligned residues; hi

� dH (Ai,Bi), where Ai contains the set of C� coordinates of
nonaligned residues in the ith loop of the first structure in
a pair, the last aligned residue from the preceding aligned
region, and the first aligned residue from the following
aligned region. Similarly, Bi is defined for the second
structure in a pair. The sets (Ai, Bi) are defined to include
two aligned residues so that the measure can be defined
even if one of the sets of nonaligned residues is empty. In
the calculation of LHM, those pairs where one or the other
protein had more than 25% missing residues in nonaligned
loops were excluded. In the case of AHM, instead of the
coordinates for the C� atoms in the loops, we use the
coordinates for the C� atoms in the aligned segments and
average over the number of aligned segments.

Definitions of disulfide bonds were obtained from the
PDB files of all protein structures for each family. Bonds
formed outside of the structure–structure alignment foot-
print regions (see “Test set” section) were disregarded. The
average number of disulfide bonds per family was calcu-
lated as the sum of the number of SS-bonds in each protein
in a family divided by the number of proteins. The fraction
of conserved disulfide bonds was calculated as a ratio
between the number of identical SS-bonds in a protein pair
and the average number of disulfide bonds within the
footprint regions of two proteins.

Statistical Analysis

The statistical analyses described in this study used the
Splus statistical package(version 6). To investigate the
relationship between sequence and structural similarity
we performed correlation and regression analyses. The
Pearson linear correlation (�) and Spearman rank correla-
tion coefficients were calculated, and the p-value under the
null hypothesis that the correlation coefficient was equal
to zero was estimated. Those families with p-values less
than 0.01 were considered as having correlation coeffi-
cients significantly different from zero. To quantify how
much the nonlinear terms improve the data fitting we
included a quadratic term in the linear model and per-
formed nonlinear regression analysis. The ratio of squared
linear correlation coefficient for the linear model (Rl

2) and
squared multiple correlation coefficient for the nonlinear
model (Rn

2) (r2 � R � Rl
2/Rn

2) in this case would indicate
the relative improvement in the data fitting upon inclusion
of the nonlinear term in the model. The higher this ratio is,
the lower the contribution of nonlinear terms upon data
fitting.

The F-test has been used to test the null hypothesis that
all regression coefficients are equal, with alternative hy-
pothesis being that the regression coefficients are not all
equal. The null hypothesis has been rejected, and there-
fore we employed multiple comparison procedures. First
we checked which regression coefficients were different
from each other by using the Tukey-Kramer method.32 For
the purpose of illustrating the Tukey-Kramer method, the
approximate method proposed by Gabriel can be applied,
which computes the comparison intervals for all regres-
sion coefficients.32 According to Gabriel’s method, two
regression coefficients are considered significantly differ-
ent if and only if their comparison intervals do not overlap.

RESULTS
The Quality of Sequence–Structure Correlation for
Different Protein Families

Table II shows the accuracy of correlation obtained
between the BLAST bitscore per residue and various
measures of structural similarity (RMSD, CC, AHM, and
LHM). As can be seen from this table, the linear correla-
tion is strong for most of the families, and half of them
have correlation coefficients better than 0.73–0.87, depend-
ing on the structural similarity measure used (Table II
lists Pearson correlation coefficients; Spearman rank corre-
lation coefficients give similar results). This result is
consistent with the studies of Wood and Pearson,20 who
showed on a smaller test set of 35 protein families that half
of them have correlation coefficients greater than 0.878.
Comparing different measures of structural similarity,
one can see that normalized AHM tends to yield a stronger
correlation than other quantities yielding 98% of families
with statistically significant linear correlation coefficients
(with p-value 
0.01). In agreement with this observation,
our previous studies showed that the AHM measure
performs very well in distinguishing homologs from ana-
logs.18 High accuracy of the AHM is due to the higher
sensitivity of the Hausdorff measure to subtle dissimilari-
ties between the aligned parts of protein structures. Based
on this observation, we chose this quantity to characterize
the structural change in the present analysis.

Figure 1(a–d) illustrates the high quality of linear
correlation for four protein families: Picornavirus capsid
protein (pfam00073), Pancreatic ribonuclease (cd00163),

TABLE II

Median
correlation
coefficient

Fraction of families
with statistically

significant
correlation, %

Fraction of
families with
r2 � 0.9, %

RMSD �0.86 94 74
CC 0.74 84 77
AHM �0.87 98 77
LHM �0.75 88 71

The table shows the 50% quantile of Pearson correlation coefficients
between AHM and BLAST bitscore per residue, fraction of families
with statistically significant correlation (p-value less than 0.01) and
the fraction of families with the ratio r2 higher than 0.9 for each
measure of structural similarity used in the study.
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GLFV-dehydrogenase (pfam00208), and Alpha-amylase
(smart00632), which all have Pearson linear correlation
coefficients less than �0.87. As shown in Figure 1(e–f), not
all families, however, exhibit such good correlation be-
tween sequence and structure changes. The Trypsin-like
serine protease family (cd00190), for example, has a
correlation coefficient of only �0.57 [Fig. 1(f)], while the
Copper-binding proteins family (pfam00127) is more ad-
equately described by the nonlinear regression model
taking into account higher order quadratic terms (r2-ratio
being equal to 0.88) [Fig. 1(e)]. In the overall test set,
among those with statistically significant correlation (79
families), 17 families had an r2-ratio smaller than 0.9
indicating that, for these cases, adding the nonlinear term
improves the performance of modeling by about 10%. It
should be noted that alignments from different sources but
belonging to the same protein family (see Methods, Table
I) except for three cases exhibit consistent behavior with
respect to the quality of linear correlation. Furthermore,
random exclusion of duplicate families does not have any
effect on the quality of linear correlation, nor on the results
discussed below.

Although the correlation between protein sequence
and structure is found to be statistically significant for
the great majority of test families, there is still a high
degree of variability in the magnitudes of the correlation
coefficients among the families. There seems to be no
strong relationship between the domain length (i.e., the
average length of structure–structure alignments in a
family) and the quality of linear correlation (� � �0.30,
p-value � 0.01). No connection between correlation
coefficients and contact density (� � �0.23, p-value �
0.04) or contact order33 (� � �0.27, p-value � 0.02) has
been observed either.

One might hypothesize that changes in structure
should not always be strongly coupled with changes in
amino acid sequence, especially if protein stability is
determined mainly by the set of strong interactions such
as covalent disulfide bonds. Figures 2 and 3 show how
the quality of linear correlation depends on the disulfide
bond content in protein families. As can be seen from
Figure 2, protein families having on average two or more
disulfide bonds per family (Sample 1, 13 families) ex-
hibit rather poor sequence–structure correlation and
proteins from the families with high correlation coeffi-
cients usually contain less than two disulfide bonds
(Sample 2, 68 families). We should note that the differ-
ence between these two distributions is not caused by
the difference in the family length (there is no signifi-
cant correlation between the number of disulfide bonds
per family and protein length).

To test the difference between two distributions of
correlation coefficients (Sample 1 and Sample 2), we
applied the Wilcoxon two-sample test, which showed that
these two samples come from populations with different
mean values (the null hypothesis was rejected with the
p-value � 0.0016). We found that the majority of SOS
bonds in Sample 1 were well conserved among different
family representatives (more than 75% conserved SOS
bonds) except for the three cases of Carboxylesterase
(pfam00135, 72% conserved SOS bonds), Trypsin-like
serine protease (smart00020, 71% conserved SOS bonds),
and Papain family Cysteine protease (pfam00112, 63%
conserved SOS bonds), whereas two of these families
(pfam00135 and pfam00112) are also characterized by
high sequence–structure correlation (� � �0.80, � �
�0.84).

Figure 3 shows as well that the quality of sequence–
structure correlation depends on the average number of
disulfide bonds per family (the correlation coefficient is
0.44 with p-value of 0.001). Because not all disulfide bonds
are conserved in protein families, we also calculated the
fraction of conserved SOS bonds per family and showed in
this figure those families that had the fraction of conserved
SOS bonds higher than 0.5 (Fig. 3, crosses). A high
fraction of conserved SOS bonds in a family points to the
preservation of specific SOS bonds in evolution and can be
used as a measure of reliability of their definition (correla-
tion coefficient for data points shown by crosses is equal to
0.64 with p-value of 0.0007).

Fig. 1. Normalized AHM is plotted versus BLAST bitscore per residue
for (a) Picornavirus capsid protein (pfam00073), (b) Pancreatic ribonucle-
ase (cd00163), (c) GLFV-dehydrogenase (pfam00208), (d) Alpha-
amylase (smart00632), (e) Copper binding proteins family (pfam00127),
and (f) Trypsin-like serine protease (cd00190). Solid lines show the linear
regression fit of the data and the values of the linear regression coefficient
b are listed for the four top families. For the family of Copper binding
proteins the solid line shows the nonlinear regression fit with quadratic
term.
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The Evolutionary Plasticity of Structure Estimated
for Different Protein Families

As we showed in the previous section, for the majority of
families, the sequence–structure dependence can be quite
well described by the linear regression. The regression
coefficients (the slope of the regression line) in these cases
would estimate the relative structural to sequence change
in the evolution of a particular protein family or, in other
words, “the evolutionary plasticity of structure” (EPS).
This measure is discussed below in more detail. To com-
pare regression coefficients for different protein families,
first we excluded families with poor correlation (�RMSD �
�8.0 or �AHM � �0.8) and large contribution of nonlinear
terms (rRMSD

2 
 0.9 or rAHM
2 
 0.9). This filtering procedure

resulted in 43 families with high linear correlation (these
families are marked by asterisks in Table I). Figure 4

depicts the histogram of regression coefficients for this set
of 43 protein families. As can be seen from this figure, the
EPS varies by about a factor of 3 among different protein
families. Likewise, Wood and Pearson20 reported a 3.9-fold
change in their “structural mutation sensitivity” for a
similar but smaller test set.

Although the regression coefficients vary between fami-
lies, one needs to test whether this difference is statisti-
cally significant. To compare the slopes of the various
families, we first tested the null hypothesis that all
regression coefficients are equal (see Methods). This hy-
pothesis is rejected with P 

 0.0001. To determine which
families have different structural tolerances, we employed
multiple comparison methods and calculated the compari-
son intervals (95% confidence) for the regression coeffi-
cients of every protein family (Fig. 5). The comparison
intervals are constructed such that two regression coeffi-
cients are significantly different if and only if their inter-
vals do not overlap.32 As can be seen from Figure 5, there

Fig. 2. The histogram shows the Person correlation coefficients between AHM and BLAST bitscore per
residue for protein families with less (a) and more (b) than two disulfide bonds per family.

Fig. 3. Pearson correlation coefficient plotted against the number of
disulfide bonds per family for the overall test set (circles) and only for
those families which have more than 50% conserved disulfide bonds
(crosses).

Fig. 4. The histogram shows linear regression coefficients for each
family with high correlation (see the caption for Table I).
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are apparently two groups of protein families that have
significantly different regression coefficients and nonover-
lapping comparison intervals, while the rest of the protein
families do not exhibit a significant difference in slopes
between each other.

The first group consists of several protein families
having the steepest slopes (highest EPS) and positioned in
the left side of the plot. These include GLFV-dehydroge-
nases (pfam00208, b � �0.27), Copper/zinc superoxide
dismutase (pfam00080, b � �0.22), Protein tyrosine phos-
phatase (smart00194, b � �0.21), and Proteasome A-type
and B-type (pfam00227, b � �0.21). The second group is
formed by proteins with the smallest EPS, which are
positioned on the right side of Figure 5; among them are
Picornavirus capsid protein family (pfam00073, cd00205,
b � �0.10), Beta/gamma-crystallins (smart00247, b �
�0.11), IPT/TIG domain (pfam01833, b � �0.12), and
Xylose isomerase (pfam00259, b � �0.12). Interestingly
enough, some protein families characterized by the lowest
EPS, form large interaction interfaces with other proteins
or cell components. For example, Picornavirus capsid
proteins are packed in highly ordered icosahedral shells
that are maintained through multiple interactions be-
tween the subunits whereas crystallins, IPT/TIG and
Xylose isomerase domains also participate in macromolecu-
lar interactions.

Overall, we found that EPS values for the majority of
protein families do not differ significantly between each
other because their comparison intervals (see Methods)
overlap. Because our test protein families spanned a wide
range of structural folds (Table I) and functions, the
previous observation implies that EPS, in general, de-
pends neither on the structural class nor on the protein
fold type. For example, the Glycosyl hydrolase family
(smart00633) has an EPS of �0.18, whereas the aldo/keto
reductase/K� channel beta subunit family has an EPS of
about �0.12, although both protein families have the TIM

barrel fold. The superfolds, the most populated structural
topologies (TIM barrels, beta trefoils, four-helical bundles,
and others), show EPS values comparable to those of other
folds (not shown).

The Evolutionary Plasticity Is Different in Loop
Regions Compared to the Protein Core Regions

The evolutionary relatedness between proteins can be
successfully gauged from the comparison of their loop
regions.18,34 Table II shows that, within the families of
homologous proteins, structural changes in loops are
strongly coupled with the evolutionary distance which, in
this case, was measured by the normalized BLAST bitscore
for the aligned regions. The sequence–structure depen-
dence in loop regions for 71% of protein families (the test
set for the loop analysis, see Methods) can be well de-
scribed by a linear model and, for 88% of the protein
families the linear correlation coefficients are found to be
statistically significant. Among families with a particu-
larly high sequence–LHM correlation, are the families of
Xylose isomerase, Class I Histocompatibility antigen, Pro-
tein tyrosine phosphatase, IG-like plexins, and others. For
some families, for example, Ribonuclease A, the sequence–
structure correlation for loops is even higher than the
correlation observed for aligned core regions. The linear
sequence–structure correlation suggests that loop regions
are, in general, under constant evolutionary pressure,
which preserves their overall structure and they therefore
change gradually as proteins diverge.

To compare the EPS of aligned core regions with the
EPS of loop regions, we computed the ratio of their
regression coefficients (bcore/bloop). The test set depicted in
Figure 6 comprises 16 protein families with a good linear
correlation for both LHM and AHM (with the requirement
that both correlation coefficients are less than �0.8 and
r2 � 0.9). Assuming equal plasticity of core regions and
loops (the null hypothesis), we expect that, in half of the
instances, bcore/bloop ratios will fall below 1, and in half of

Fig. 5. The linear regression coefficients (b) are plotted together with
their comparison intervals (see Methods) for each family with high
correlation (see the caption for Table I). All families are ordered with
respect to the increasing regression coefficients.

Fig. 6. The histogram of the ratio between regression coefficients
obtained for aligned parts (AHM used as a measure of structural
similarity) and regression coefficients obtained for loops (LHM used as a
measure of structural similarity).
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the instances these ratios will be above 1 (8:8 ratio).
However, we observed 15 cases where the bcore/bloop ratio
was less than 1. The probability to observe such bias given
the above assumption can be estimated from the binomial
distribution as p(0.5, 0, 16) � p(0.5, 1, 16) � 0.00026. Thus,
equal plasticities of core regions and loops is not likely to
be compatible with our observations. This suggests that
loop regions have higher evolutionary plasticity of struc-
ture compared to the protein core and, as can be seen from
Figure 6, for the majority of families (12 families), the ratio
of regression coefficients for the core and loop regions lies
between 0.2 and 0.6.

DISCUSSION AND CONCLUSION

In this article, we study the structural evolution of
homologous proteins in terms of their sequence–structure
dependence. We showed that the protein structural vari-
ability for a great majority of protein families is linearly
coupled with the sequence variability, which suggests
that, typically, protein structure gradually changes as
proteins diverge during evolution. However, when the
protein structural core is stabilized by strong interactions
such as disulfide bonds, the correlation between structural
and sequence divergence is much weaker if detectable at
all. Protein families that have large number of disulfide
bonds (which are usually conserved) typically do not show
a linear sequence–structure correlation in contrast to
families with fewer disulfide bonds. Apparently, during
the evolution of these families, purifying selection pre-
serves the disulfide contacts and has a much weaker effect
in the rest of the protein molecule such that, in these cases,
the structural variability cannot be explained predomi-
nantly by the changes in sequence.

Drawing an analogy with solid mechanics, the sequence–
structure dependence curves can be viewed as stress–
strain curves where the physical body undergoes geometri-
cal deformation after applying a stress. In the case of
protein evolution, amino acid substitutions introduce the
stress on protein structure, and structure either adjusts to
the change or breaks apart. The linear dependences of
measures of structural similarity on sequence similarity
observed for the majority of protein families in our test set
allows us to compare “the evolutionary plasticity of struc-
ture” (EPS) between different families. The evolutionary
plasticity of structure for a given family is defined, accord-
ingly, as a degree of structural variation per unit of
sequence variation. Low values of EPS (shallow slope of
the regression line) correspond to the situation when
protein structure is highly conserved within a family of
homologs relative to sequence changes. This could be
caused either by strong functional constraints imposed on
the structure or by high structural stiffness, that is, the
inability to accommodate large structural variations with-
out breaking the molecule apart. High values of EPS (steep
slope) correspond to the situation when large structural
shifts (within a framework of a given protein fold) can
occur upon minor sequence divergence as a result of
relaxed functional constraints on the structure and/or high
structural tolerance of a given fold.

The rigorous statistical analysis performed in this work
suggests that, with several exceptions, the values of the
EPS for protein structural cores do not significantly differ
between protein families. Interestingly enough, despite
the variability among protein families in functional con-
straints and types of structural folds, the proteins from
different families respond similarly to the sequence drift in
evolution. This observation is based on the evaluation of
multiple comparison intervals for the EPS values rather
than on direct comparison of sequence–structure correla-
tion slopes as has been done by others.20 One could argue
that this result could be an artifact caused by possible
flaws in the analysis such as insufficient structural data
and/or derivation of sequence and structure similarity
measures. However, the observed high correlation be-
tween sequence and structural divergence within indi-
vidual families suggests that the analysis described here is
robust. Moreover, the observed EPS values were not found
to be statistically different, even though the test set was
designed in such a way (protein families with high linear
correlation and sufficient number of sequences) to reduce
the uncertainty of the EPS estimates.

It is commonly observed that the size of the sequence
space is much larger than the size of structure space, and
the number of different structural folds is rather small,
estimated to be several thousand.35–40 Moreover, certain
protein topologies are realized in evolution much more
often than others (so-called “superfolds”), and the exis-
tence of such inequality in fold frequencies is sometimes
attributed to specific physicochemical or geometrical prop-
erties of superfolds. Our results demonstrate that the
gradual change of structure follows the same pattern in
different protein families, suggesting that the role of
intrinsic characteristics of superfolds in evolution might
be exaggerated. In this respect we argue that the differ-
ences between common and rare folds may arise in evolu-
tion semirandomly, that is, via self-enhancing stochastic
fluctuations of abundance of essentially equal folds.7 In
any case, until the existence and significance of differences
in “evolutionary plasticity of structure” between protein
families is conclusively demonstrated, there is probably no
ground to use their inequality as a working hypothesis in
studies of protein structural evolution.
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